13 research outputs found

    A Positivity-Preserving Finite Element Scheme for the Relaxed Cahn-Hilliard Equation with Single-Well Potential and Degenerate Mobility

    Get PDF
    We propose and analyse a finite element approximation of the Cahn-Hilliard equation regularised in space with single-well potential of Lennard-Jones type and degenerate mobility. The Cahn-Hilliard model has recently been applied to model evolution and growth for living tissues: although the choices of degenerate mobility and singular potential are biologically relevant, they induce difficulties regarding the design of a numerical scheme. We propose a finite element scheme in one and two dimensions and we show that it preserves the physical bounds of the solutions thanks to an upwind approach adapted to the finite elements method. Moreover, we show well-posedness, energy stability properties and convergence of solutions to the numerical scheme. Finally, numerical simulations in one and two dimensions are presented

    Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues

    Get PDF
    Multiphase mechanical models are now commonly used to describe living tissues including tumour growth. The specific model we study here consists of two equations of mixed parabolic and hyperbolic type which extend the standard compressible porous medium equation, including cross-reaction terms. We study the incompressible limit, when the pressure becomes stiff, which generates a free boundary problem. We establish the complementarity relation and also a segregation result. Several major mathematical difficulties arise in the two species case. Firstly, the system structure makes comparison principles fail. Secondly, segregation and internal layers limit the regularity available on some quantities to BV. Thirdly, the Aronson-B{\'e}nilan estimates cannot be established in our context. We are lead, as it is classical, to add correction terms. This procedure requires technical manipulations based on BV estimates only valid in one space dimension. Another novelty is to establish an L1 version in place of the standard upper bound

    A nonnegativity preserving scheme for the relaxed Cahn-Hilliard equation with single-well potential and degenerate mobility

    Full text link
    We propose and analyze a finite element approximation of the relaxed Cahn-Hilliard equation with singular single-well potential of Lennard-Jones type and degenerate mobility that is energy stable and nonnegativity preserving. The Cahn-Hilliard model has recently been applied to model evolution and growth for living tissues: although the choices of degenerate mobility and singular potential are biologically relevant, they induce difficulties regarding the design of a numerical scheme. We propose a finite element scheme and we show that it preserves the physical bounds of the solutions thanks to an upwind approach adapted to the finite element method. Moreover, we show well-posedness, energy stability properties, and convergence of solutions of the numerical scheme. Finally, we validate our scheme by presenting numerical simulations in one and two dimensions

    From a discrete model of chemotaxis with volume-filling to a generalized Patlak–Keller–Segel model

    Get PDF
    Funding: The authors gratefully acknowledge support of the project PICS-CNRS no. 07688. F.B. acknowledges funding from the European Research Council (ERC, grant agreement No. 740623) and the Université Franco-Italienne.We present a discrete model of chemotaxis whereby cells responding to a chemoattractant are seen as individual agents whose movement is described through a set of rules that result in a biased random walk. In order to take into account possible alterations in cellular motility observed at high cell densities (i.e. volume-filling), we let the probabilities of cell movement be modulated by a decaying function of the cell density. We formally show that a general form of the celebrated Patlak–Keller–Segel (PKS) model of chemotaxis can be formally derived as the appropriate continuum limit of this discrete model. The family of steady-state solutions of such a generalized PKS model are characterized and the conditions for the emergence of spatial patterns are studied via linear stability analysis. Moreover, we carry out a systematic quantitative comparison between numerical simulations of the discrete model and numerical solutions of the corresponding PKS model, both in one and in two spatial dimensions. The results obtained indicate that there is excellent quantitative agreement between the spatial patterns produced by the two models. Finally, we numerically show that the outcomes of the two models faithfully replicate those of the classical PKS model in a suitable asymptotic regime.PostprintPeer reviewe

    A nonsmooth regularization approach based on shearlets for Poisson noise removal in ROI tomography

    No full text
    Due to its potential to lower exposure to X-ray radiation and reduce the scanning time, region-of-interest (ROI) computed tomography (CT) is particularly appealing for a wide range of biomedical applications. To overcome the severe ill-posedness caused by the truncation of projection measurements, ad hoc strategies are required, since traditional CT reconstruction algorithms result in instability to noise, and may give inaccurate results for small ROI. To handle this difficulty, we propose a nonsmooth convex optimization model based on ℓ1 shearlet regularization, whose solution is addressed by means of the variable metric inexact line search algorithm (VMILA), a proximal-gradient method that enables the inexact computation of the proximal point defining the descent direction. We compare the reconstruction performance of our strategy against a smooth total variation (sTV) approach, by using both Poisson noisy simulated data and real data from fan-beam CT geometry. The results show that, while for synthetic data both shearets and sTV perform well, for real data, the proposed nonsmooth shearlet-based approach outperforms sTV, since the localization and directional properties of shearlets allow to detect finer structures of a textured image. Finally, our approach appears to be insensitive to the ROI size and location

    Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations

    Get PDF
    International audienceThe parabolic-elliptic Keller-Segel equation with sensitivity saturation, because of its pattern formation ability, is a challenge for numerical simulations. We provide two finite-volume schemes whose goals are to preserve, at the discrete level, the fundamental properties of the solutions, namely energy dissipation, steady states, positivity and conservation of total mass. These requirements happen to be critical when it comes to distinguishing between discrete steady states, Turing unstable transient states, numerical artifacts or approximate steady states as obtained by a simple upwind approach. These schemes are obtained either by following closely the gradient flow structure or by a proper exponential rewriting inspired by the Scharfetter-Gummel discretization. An interesting feature is that upwind is also necessary for all the expected properties to be preserved at the semi-discrete level. These schemes are extended to the fully discrete level and this leads us to tune precisely the terms according to explicit or implicit discretizations. Using some appropriate monotony properties (reminiscent of the maximum principle), we prove well-posedness for the scheme as well as all the other requirements. Numerical implementations and simulations illustrate the respective advantages of the three methods we compare

    A coupled 3D-1D multiscale Keller-Segel model of chemotaxis and its application to cancer invasion

    No full text
    Many problems arising in biology display a complex system dynamics at different scales of space and time. For this reason, multiscale mathematical models have attracted a great attention as they enable to take into account phenomena evolving at several characteristic lengths. However, they require advanced model reduction techniques to reduce the computational cost of solving all the scales. In this work, we present a novel version of the Keller-Segel model of chemotaxis on embedded multiscale geometries, i.e., one-dimensional networks embedded in three-dimensional bulk domains. Applying a model reduction technique based on spatial averaging for geometrical order reduction, we reduce a fully three-dimensional Keller-Segel system to a coupled 3D-1D multiscale model. In the reduced model, the dynamics of the cellular population evolves on a one-dimensional network and its migration is influenced by a three-dimensional chemical signal evolving in the bulk domain. We propose the multiscale version of the Keller-Segel model as a realistic approach to describe the invasion of malignant cancer cells along the collagen fibers that constitute the extracellular matrix. Performing several numerical simulations, we investigate how the invasive abilities of the cells are affected by the topology of the network (i.e., matrix fibers orientation and alignment) as well as by three-dimensional spatial effects. We discuss these results in light of biological evidences

    A chemotaxis-based explanation of spheroid formation in 3D cultures of breast cancer cells

    Get PDF
    International audienceThree-dimensional cultures of cells are gaining popularity as an in vitro improvement over 2D Petri dishes. In many such experiments, cells have been found to organize in aggregates. We present new results of three-dimensional in vitro cultures of breast cancer cells exhibiting patterns. Understanding their formation is of particular interest in the context of cancer since metastases have been shown to be created by cells moving in clusters. In this paper, we propose that the main mechanism which leads to the emergence of patterns is chemotaxis, i.e., oriented movement of cells towards high concentration zones of a signal emitted by the cells themselves. Studying a Keller-Segel PDE system to model chemotactical auto-organization of cells, we prove that it is subject to Turing instability under a time-dependent condition. This result is illustrated by two-dimensional simulations of the model showing spheroidal patterns. They are qualitatively compared to the biological results and their variability is discussed both theoretically and numerically
    corecore